The Process of Identifying Automobile Joint Failures during the Operation Phase: Data Analytics Based on Association Rules

Author:

Buyvol Polina1ORCID,Makarova Irina1ORCID,Voroshilov Aleksandr1,Krivonogova Alla1

Affiliation:

1. Naberezhnye Chelny Institute, Kazan Federal University, Syuyumbike Prosp. 10a, 423812 Naberezhnye Chelny, Russia

Abstract

The increasing complexity of vehicle design, the use of new engine types and fuels, and the increasing intelligence of automobiles are making it increasingly difficult to ensure trouble-free operation. Finding faulty parts quickly and accurately is becoming increasingly difficult, as the diagnostic process requires analyzing a great amount of information. Therefore, we propose an approach based on association rules, a machine learning technique, to simplify the defect detection process. To facilitate its use in a real repair company environment, we have developed a web service that allows a repairman to simultaneously identify nodes with a high probability of failure. We have described the structure and working principles of the developed web service, as well as the procedure for its application, which resulted in the discovery of several useful non-trivial rules. We have presented several rules resulting from the use of this interactive tool, which allow repairers to detect possible defects in the relevant components, during the diagnostic process, quickly and easily. These rules are also well supported and can be used by procurement departments to make tactical decisions when selecting the most promising suppliers and manufacturers. The methodology developed allows the evaluation of the effectiveness of changes in the design and technology for the manufacture and operation of individual vehicle components, analyzing the change in the composition of parts combinations over time.

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3