Automatic Identification of Similar Pull-Requests in GitHub’s Repositories Using Machine Learning

Author:

Eyal Salman HamzehORCID,Alshara Zakarea,Seriai Abdelhak-Djamel

Abstract

Context: In a social coding platform such as GitHub, a pull-request mechanism is frequently used by contributors to submit their code changes to reviewers of a given repository. In general, these code changes are either to add a new feature or to fix an existing bug. However, this mechanism is distributed and allows different contributors to submit unintentionally similar pull-requests that perform similar development activities. Similar pull-requests may be submitted to review in parallel time by different reviewers. This will cause redundant reviewing time and efforts. Moreover, it will complicate the collaboration process. Objective: Therefore, it is useful to assign similar pull-requests to the same reviewer to be able to decide which pull-request to choose in effective time and effort. In this article, we propose to group similar pull-requests together into clusters so that each cluster is assigned to the same reviewer or the same reviewing team. This proposal allows saving reviewing efforts and time. Method: To do so, we first extract descriptive textual information from pull-requests content to link similar pull-requests together. Then, we employ the extracted information to find similarities among pull-requests. Finally, machine learning algorithms (K-Means clustering and agglomeration hierarchical clustering algorithms) are used to group similar pull-requests together. Results: To validate our proposal, we have applied it to twenty popular repositories from public dataset. The experimental results show that the proposed approach achieved promising results according to the well-known metrics in this subject: precision and recall. Furthermore, it helps to save the reviewer time and effort. Conclusion: According to the obtained results, the K-Means algorithm achieves 94% and 91% average precision and recall values over all considered repositories, respectively, while agglomeration hierarchical clustering performs 93% and 98% average precision and recall values over all considered repositories, respectively. Moreover, the proposed approach saves reviewing time and effort on average between (67% and 91%) by K-Means algorithm and between (67% and 83%) by agglomeration hierarchical clustering algorithm.

Publisher

MDPI AG

Subject

Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PR-DupliChecker: detecting duplicate pull requests in Fork-based workflows;International Journal of System Assurance Engineering and Management;2024-06-19

2. AI-based clustering of similar issues in GitHub’s repositories;Journal of Computer Languages;2024-03

3. Leveraging a combination of machine learning and formal concept analysis to locate the implementation of features in software variants;Information and Software Technology;2023-12

4. Extracting Insights from Big Source Code Repositories with Automatic Clustering of Projects by File Names and Types;2023 International Conference on Smart Applications, Communications and Networking (SmartNets);2023-07-25

5. Analysis of RSS Patterns to Detect Rogue Access Points;2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3