AR-Sanad 280K: A Novel 280K Artificial Sanads Dataset for Hadith Narrator Disambiguation

Author:

Mahmoud Somaia,Saif Omar,Nabil Emad,Abdeen MohammadORCID,ElNainay MustafaORCID,Torki Marwan

Abstract

Determining hadith authenticity is vitally important in the Islamic religion because hadiths record the sayings and actions of Prophet Muhammad (PBUH), and they are the second source of Islamic teachings following the Quran. When authenticating a hadith, the reliability of the hadith narrators is a big factor that hadith scholars consider. However, many narrators share similar names, and the narrators’ full names are not usually included in the narration chains of hadiths. Thus, first, ambiguous narrators need to be identified. Then, their reliability level can be determined. There are no available datasets that could help address this problem of identifying narrators. Here, we present a new dataset that contains narration chains (sanads) with identified narrators. The AR-Sanad 280K dataset has around 280K artificial sanads and could be used to identify 18,298 narrators. After creating the AR-Sanad 280K dataset, we address the narrator disambiguation in several experimental setups. The hadith narrator disambiguation is modeled as a multiclass classification problem with 18,298 class labels. We test different representations and models in our experiments. The best results were achieved by finetuning BERT-Based deep learning model (AraBERT). We obtained a 92.9 Micro F1 score and 30.2 sanad error rate (SER) on the validation set of our artificial sanads AR-Sanad 280K dataset. Furthermore, we extracted a real test set from the sanads of the famous six books in Islamic hadith. We evaluated the best model on the real test data, and we achieved 83.5 Micro F1 score and 60.6 sanad error rate.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Information Systems

Reference40 articles.

1. The Future of Islam;Esposito,2010

2. Authentication of Hadith: Redefining the Criteria;Khan,2010

3. Computational and natural language processing based studies of hadith literature: a survey

4. Analysis Name Entity Disambiguation Using Mining Evidence Method

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3