Feature Extraction and Representation of Urban Road Networks Based on Travel Routes

Author:

Huang Shichen,Shao Chunfu,Li JuanORCID,Yang Xiong,Zhang Xiaoyu,Qian Jianpei,Wang Shengyou

Abstract

Extraction of traffic features constitutes a key research direction in traffic safety planning. In previous traffic tasks, road network features are extracted manually. In contrast, Network Representation Learning aims to automatically learn low-dimensional node representations. Enlightened by feature learning in Natural Language Processing, representation learning of urban nodes is studied as a supervised task in this paper. Following this line of thinking, a deep learning framework, called StreetNode2VEC, is proposed for learning feature representations for nodes in the road network based on travel routes, and then model parameter calibration is performed. We explain the effectiveness of features from visualization, similarity analysis, and link prediction. In visualization, the features of nodes naturally present a clustered pattern, and different clusters correspond to different regions in the road network. Meanwhile, the features of nodes still retain their spatial information in similarity analysis. The proposed method StreetNode2VEC obtains a AUC score of 0.813 in link prediction, which is greater than that obtained from Graph Convolutional Network (GCN) and Node2vec. This suggests that the features of nodes can be used to effectively and credibly predict whether a link should be established between two nodes. Overall, our work provides a new way of representing road nodes in the road network, which have potential in the traffic safety planning field.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3