Abstract
Free-form design may enhance the architectural value of buildings in terms of aesthetic and symbolic effects. However, it is difficult to reuse the mold of free-form concrete segments, so they are manufactured for single use. Manufacturing these molds is a time-consuming process that requires a lot of manpower. To solve these problems, there have been numerous studies on the use of phase change materials (PCMs) to make the molds. PCM molds represent a new technique of producing free-form panels using a computerized numeric control (CNC) machine that employs low-cost material to produce free-form concrete panels. However, PCM molds require a substantial amount of time and energy during fabrication because repeated heating and cooling cycles are required during panel production, and this process increases the CO2 emissions. Thus, the purposes of this study were to develop composite molds using aluminum powder to improve PCM mold performance and to conduct experiments to quantify the reduction of energy use and CO2 emissions. As a result of cooling experiments, it was found that the aluminum powder mold had an energy reduction effect of 14.3% against the PCM mold that had been produced only with paraffin wax, and CO2 reduction effect of more than 50% against the conventional mold.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference28 articles.
1. Current trends and future directions of free-form building technology
2. Production Technology of Free-Form Concrete Segments Using Phase Change Material;Lee,2014
3. Conceptual Study of Production Technology of Free-Form Concrete Segments
4. The Sydney Opera House, Inside and Outhttps://ses.library.usyd.edu.au/bitstream/handle/2123/1415/08chapter7.pdf;jsessionid=A02ECB8BE3B55C6E3CD3746D1B9B9738?sequence=8
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献