Structural Performance of Shear Loaded Precast EPS-Foam Concrete Half-Shaped Slabs

Author:

Saheed SanusiORCID,Aziz Farah N. A. Abd.ORCID,Amran Mugahed,Vatin NikolaiORCID,Fediuk Roman,Ozbakkaloglu Togay,Murali GunasekaranORCID,Mosaberpanah Mohammad AliORCID

Abstract

Precast concrete elements provide a feasible way to expedite on-site construction; however, typical precast components are massive, making their use particularly undesirable at construction sites that suffer from low load-bearing capacity or have swelling soils. This research aims to develop an optimal lightweight expanded polystyrene foam concrete (EPS-foam concrete) slab through a consideration of various parameters. The precast EPS-foam concrete half-shaped slabs were prepared with a density and compressive strength of 1980 kg/m3 and 35 MPa, respectively. Quarry dust (QD) and EPS beads were utilized as substitutions for fine and coarse aggregates with replacement-levels that varied from 5% to 22.5% and 15% to 30%, respectively. The use of EPS beads revealed sufficient early age strength; at the same time, the utilization of quarry dust in EPS-foam concrete led to a more than 30% increase in compressive strength compared to the EPS-based mixtures. Two hundred and fifty-six trial mixes were produced to examine the physical and mechanical characteristics of EPS-foam concrete. Three batches of a total of four EPS-foam concrete half-shaped slabs with spans of 3.5 and 4.5 m and thicknesses of 200 and 250 mm were prepared. Findings showed that the ultimate shear forces for the full-scale EPS-foam concrete half-shaped slabs were approximately 6–12% lower than those of the identical concrete samples with a 2410 kg/m3 average density, and 26–32% higher than the theoretical predictions. Also, it was observed that the self-weight of EPS-foam concrete was reduced by up to 20% compared to the control mixtures. Findings revealed that the prepared precast EPS-foam concrete half-shaped slabs could possibly be applied as flooring elements in today’s modern infrastructure.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3