Efficient Operation of the Hybrid Power System Using an Optimal Fueling Strategy and Control of the Fuel Cell Power Based on the Required Power Tracking Algorithm

Author:

Bizon NicuORCID,Thounthong PhatiphatORCID,Guilbert DamienORCID

Abstract

In this paper, four fuel economy strategies using power tracking control of the fuel cell boost converter and fuel cell optimization through the control of the fueling regulators were analyzed. The performance and safe operation in conditions of load disturbances and variations of renewable energy were considered. A benchmark strategy was used as a well-known strategy, which was based on the static feed-forward control of the fueling regulators. One of the four strategies is new and was based on switching the optimization reference to air and fuel regulators based on a threshold of the required power from the fuel cell system. The advantages of using the power tracking control and the optimization based on two variables instead of one are highlighted in sizing the battery capacity and its lifetime, and obtaining fuel economy respectively. The percentages of fuel economy for the analyzed strategies compared to the reference strategy are between 2.83% and 4.36%, and between 7.69% and 12.94%, in the case of a dynamic load cycle with an average of 5 kW and 2.5 kW, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference35 articles.

1. Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies

2. A review of nanogrid topologies and technologies

3. Off-Grid Renewable Energy Systems: Status and Methodological Issues,2015

4. Artificial intelligence power controller of fuel cell based DC nanogrid

5. Global Energy Review 2020—Analysis-IEAhttps://www.iea.org/reports/global-energy-review-2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3