Evaluation of Sentinel-2/MSI Atmospheric Correction Algorithms over Two Contrasted French Coastal Waters

Author:

Bui Quang-Tu,Jamet CédricORCID,Vantrepotte Vincent,Mériaux Xavier,Cauvin ArnaudORCID,Mograne Mohamed AbdelillahORCID

Abstract

The Sentinel-2A and Sentinel-2B satellites, with on-board Multi-Spectral Instrument (MSI), and launched on 23 June 2015 and 7 March 2017, respectively, are very useful tools for studying ocean color, even if they were designed for land and vegetation applications. However, the use of these satellites requires a process called “atmospheric correction”. This process aims to remove the contribution of the atmosphere from the total top of atmosphere reflectance measured by the remote sensors. For the purpose of assessing this processing, seven atmospheric correction algorithms have been compared over two French coastal regions (English Channel and French Guiana): Image correction for atmospheric effects (iCOR), Atmospheric correction for OLI ‘lite’ (ACOLITE), Case 2 Regional Coast Colour (C2RCC), Sentinel 2 Correction (Sen2Cor), Polynomial-based algorithm applied to MERIS (Polymer), the standard NASA atmospheric correction (NASA-AC) and the Ocean Color Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART). The satellite-estimated remote-sensing reflectances were spatially and temporally matched with in situ measurements collected by an ASD FieldSpec4 spectrophotometer. Results, based on 28 potential individual match-ups, showed that the best performance processor is OC-SMART with the highest values for the total score Stot (16.89) and for the coefficient of correlation R2 (ranging from 0.69 at 443 nm to 0.92 at 665 nm). iCOR and Sen2Cor show the less accurate performances with total score Stot values of 2.01 and 7.70, respectively. Since the size of the in situ observation platform can be significant compared to the pixel resolution of MSI onboard Sentinel-2, it can create bias in the pixel extraction process. Thus, to study this impact, we used different methods of pixel extraction. However, there are no significant changes in results; some future research may be necessary.

Funder

European Space Agency

European Space Research Institute

Centre National d'Études Spatiales

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3