Abstract
Past redistributions of the Earth’s mass resulting from the Earth’s viscoelastic response to the cycle of deglaciation and glaciation reflect the process known as glacial isostatic adjustment (GIA). GPS data are effective at constraining GIA velocities, provided that these data are accurate, have adequate spatial coverage, and account for competing geophysical processes, including the elastic loading of ice/snow ablation/accumulation. GPS solutions are significantly affected by common mode errors (CMEs) and the choice of optimal noise model, and they are contaminated by other geophysical signals due primarily to the Earth’s elastic response. Here, independent component analysis is used to remove the CMEs, and the Akaike information criterion is used to determine the optimal noise model for 79 GPS stations in Antarctica, primarily distributed across West Antarctica and the Antarctic Peninsula. Next, a high-resolution surface mass variation model is used to correct for elastic deformation. Finally, we use the improved GPS solution to assess the accuracy of seven contemporary GIA forward models in Antarctica. The results show that the maximal GPS crustal displacement velocity deviations reach 4.0 mm yr−1, and the mean variation is 0.4 mm yr−1 after removing CMEs and implementing the noise analysis. All GIA model-predicted velocities are found to systematically underestimate the GPS-observed velocities in the Amundsen Sea Embayment. Additionally, the GPS vertical velocities on the North Antarctic Peninsula are larger than those on the South Antarctic Peninsula, and most of the forward models underestimate the GIA impact on the Antarctic Peninsula.
Funder
National Key Research and Development Program of China
he State Key Program of the National Natural Science Foundation of China
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献