Using Ensemble-Based Systems with Near-Infrared Hyperspectral Data to Estimate Seasonal Snowpack Density

Author:

El Oufir Mohamed KarimORCID,Chokmani KaremORCID,El Alem AnasORCID,Bernier Monique

Abstract

Estimating the seasonal density of the snowpack has many financial and environmental benefits. Rapid assessment and daily monitoring of its evolution are therefore key to effective prevention. Traditionally, the physical characteristics of snow are measured directly in the field, which involves high costs and personnel mobilization. Hyperspectral imaging is a reliable and efficient technique to study and evaluate this physical property. The spectral reflectance of snow is partly defined by changes in its physical properties, particularly in the Near infrared (NIR) part of the spectrum. Recently, a hybrid snow density estimation model allowing retrieval of density from NIR hyperspectral data was developed, based on an a priori classification of snow samples. However, in order to obtain optimal density estimates with the Hybrid model (HM), the sources of classification and estimation error must be controlled. Following the same principle as the HM, an Ensemble-based system (EBS) was developed. This model reduces the number of misclassification errors produced by the HM. The general concept of EBS algorithms is based on the principle that obtaining more opinions before making a decision is part of human nature, especially when economic and environmental benefits are at stake. This approach has helped to reduce the risk of classification and estimation errors and to develop more robust density results. One hundred and fourteen snow samples collected during three winters (2018–2020) were used to calibrate and validate the EBS. The performance of the EBS was validated using an independent database and the results were satisfactory (R2 = 0.90, RMSE = 44.45 kg m−3, BIAS = 3.87 kg m−3 and NASH = 0.89).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3