An Object-Based Approach to Map Young Forest and Shrubland Vegetation Based on Multi-Source Remote Sensing Data

Author:

Rittenhouse Chadwick D.ORCID,Berlin Elana H.,Mikle Nathaniel,Qiu ShiORCID,Riordan Dustin,Zhu ZheORCID

Abstract

Many remote sensing studies have individually addressed afforestation, forest disturbance and forest regeneration, and considered land use history. However, no single study has simultaneously addressed all of these components that collectively constitute successional stages and pathways of young forest and shrubland at large spatial extents. Our goal was to develop a multi-source, object-based approach that utilized the strengths of Landsat (large spatial extent with good temporal coverage), LiDAR (vegetation height and vertical structure), and aerial imagery (high resolution) to map young forest and shrubland vegetation in a temperate forest. Further, we defined young forest and shrubland vegetation types in terms of vegetation height and structure, to better distinguish them in remote sensing for ecological studies. The multi-source, object-based approach provided an area-adjusted estimate of 42,945 ha of young forest and shrubland vegetation in Connecticut with overall map accuracy of 88.2% (95% CI 2.3%), of which 20,953 ha occurred in complexes ≥2 ha in size. Young forest and shrubland vegetation constituted 3.3% of Connecticut’s total land cover and 6.3% of forest cover as of 2018. Although the 2018 estimates are consistent with those of the past 20 years, concerted efforts are needed to restore, maintain, or manage young forest and shrubland vegetation in Connecticut.

Funder

Connecticut Department of Energy and Environmental Protection

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3