Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods

Author:

Su Pi-GueyORCID,Liu Xiang-Hong

Abstract

A novel double-shelled hollow (DSH) structure of ZnTiO3 microrods was prepared by self-templating route with the assistance of poly(diallyldimethylammonium chloride) (PDDA) in an ethylene glycol (EG) solution, which was followed by calcining. Moreover, the NH3 gas-sensing properties of the DSH ZnTiO3 microrods were studied at room temperature. The morphology and composition of DSH ZnTiO3 microrods films were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The formation process of double-shelled hollow microrods was discussed in detail. The comparative gas-sensing results revealed that the DSH ZnTiO3 microrods had a higher response to NH3 gas at room temperature than those of the TiO2 solid microrods and DSH ZnTiO3 microrods did in the dark. More importantly, the DSH ZnTiO3 microrods exhibited a strong response to low concentrations of NH3 gas at room temperature.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3