Molecular Analysis of Volatile Metabolites Synthesized by Candida albicans and Staphylococcus aureus in In Vitro Cultures and Bronchoalveolar Lavage Specimens Reflecting Single- or Duo-Factor Pneumonia

Author:

Filipiak Wojciech1ORCID,Wenzel Matthias2,Ager Clemens2ORCID,Mayhew Chris A.2,Bogiel Tomasz3ORCID,Włodarski Robert4ORCID,Nagl Markus5ORCID

Affiliation:

1. Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, A. Jurasza 2 Str., 85-089 Bydgoszcz, Poland

2. Institute for Breath Research, Universität Innsbruck, Innrain 66 and 80-82, A-6020 Innsbruck, Austria

3. Department of Microbiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Maria Curie-Skłodowska 9 Str., 85-094 Bydgoszcz, Poland

4. Department of Anaesthesiology and Intensive Care, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5 Str., 85-681 Bydgoszcz, Poland

5. Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria

Abstract

Current microbiological methods for pneumonia diagnosis require invasive specimen collection and time-consuming analytical procedures. There is a need for less invasive and faster methods to detect lower respiratory tract infections. The analysis of volatile metabolites excreted by pathogenic microorganisms provides the basis for developing such a method. Given the synergistic role of Candida albicans in increasing the virulence of pathogenic bacteria causing pneumonia and the cross-kingdom metabolic interactions between microorganisms, we compare the emission of volatiles from Candida albicans yeasts and the bacteria Staphylococcus aureus using single and mixed co-cultures and apply that knowledge to human in vivo investigations. Gas chromatography–mass spectrometry (GC-MS) analysis resulted in the identification of sixty-eight volatiles that were found to have significantly different levels in cultures compared to reference medium samples. Certain volatiles were found in co-cultures that mainly originated from C. albicans metabolism (e.g., isobutyl acetate), whereas other volatiles primarily came from S. aureus (e.g., ethyl 2-methylbutyrate). Isopentyl valerate reflects synergic interactions of both microbes, as its level in co-cultures was found to be approximately three times higher than the sum of its amounts in monocultures. Hydrophilic–lipophilic-balanced (HLB) coated meshes for thin-film microextraction (TFME) were used to preconcentrate volatiles directly from bronchoalveolar lavage (BAL) specimens collected from patients suffering from ventilation-associated pneumonia (VAP), which was caused explicitly by C. albicans and S. aureus. GC-MS analyses confirmed the existence of in vitro-elucidated microbial VOCs in human specimens. Significant differences in BAL-extracted amounts respective to the pathogen-causing pneumonia were found. The model in vitro experiments provided evidence that cross-kingdom interactions between pathogenic microorganisms affect the synthesis of volatile compounds. The TFME meshes coated with HLB particles proved to be suitable for extracting VOCs from human material, enabling the translation of in vitro experiments on the microbial volatilome to the in vivo situation involving infected patients. This indicates the direction that should be taken for further clinical studies on VAP diagnosis based on volatile analysis.

Funder

NATIONAL SCIENCE CENTRE, POLAND

Publisher

MDPI AG

Reference30 articles.

1. National Healthcare Safety Network of CDC (2024, April 10). HAI Pathogens and Antimicrobial Resistance Report, 2018–2021, Available online: https://www.cdc.gov/nhsn/hai-report/index.html.

2. Candida spp. airway colonization could promote antibiotic-resistant bacteria selection in patients with suspected ventilator-associated pneumonia;Hamet;Intensive Care Med.,2012

3. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia;Azoulay;Chest,2006

4. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance;Harriott;Antimicrob. Agents Chemother.,2009

5. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans;McAlester;J. Med. Microbiol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3