mRCat: A Novel CatBoost Predictor for the Binary Classification of mRNA Subcellular Localization by Fusing Large Language Model Representation and Sequence Features

Author:

Wang Xiao12ORCID,Yang Lixiang1,Wang Rong3

Affiliation:

1. School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China

3. School of Electronic Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

The subcellular localization of messenger RNAs (mRNAs) is a pivotal aspect of biomolecules, tightly linked to gene regulation and protein synthesis, and offers innovative insights into disease diagnosis and drug development in the field of biomedicine. Several computational methods have been proposed to predict the subcellular localization of mRNAs within cells. However, there remains a deficiency in the accuracy of these predictions. In this study, we propose an mRCat predictor based on the gradient boosting tree algorithm specifically to predict whether mRNAs are localized in the nucleus or in the cytoplasm. This predictor firstly uses large language models to thoroughly explore hidden information within sequences and then integrates traditional sequence features to collectively characterize mRNA gene sequences. Finally, it employs CatBoost as the base classifier for predicting the subcellular localization of mRNAs. The experimental validation on an independent test set demonstrates that mRCat obtained accuracy of 0.761, F1 score of 0.710, MCC of 0.511, and AUROC of 0.751. The results indicate that our method has higher accuracy and robustness compared to other state-of-the-art methods. It is anticipated to offer deep insights for biomolecular research.

Funder

Key Research Project of Colleges and Universities of Henan Province

Key Science and Technology Development Program of Henan Province

Training Program of Young Backbone Teachers in Colleges and Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3