Intelligent Control of Wastewater Treatment Plants Based on Model-Free Deep Reinforcement Learning

Author:

Aponte-Rengifo Oscar1,Francisco Mario1ORCID,Vilanova Ramón2ORCID,Vega Pastora1ORCID,Revollar Silvana1ORCID

Affiliation:

1. Department of Computer Science and Automatics, Faculty of Sciences, University of Salamanca, Plaza de la Merced, s/n, 37008 Salamanca, Spain

2. Department of Automation Systems and Advanced Control Research, Autonomous University of Barcelona, 08193 Barcelona, Spain

Abstract

In this work, deep reinforcement learning methodology takes advantage of transfer learning methodology to achieve a reasonable trade-off between environmental impact and operating costs in the activated sludge process of Wastewater treatment plants (WWTPs). WWTPs include complex nonlinear biological processes, high uncertainty, and climatic disturbances, among others. The dynamics of complex real processes are difficult to accurately approximate by mathematical models due to the complexity of the process itself. Consequently, model-based control can fail in practical application due to the mismatch between the mathematical model and the real process. Control based on the model-free reinforcement deep learning (RL) methodology emerges as an advantageous method to arrive at suboptimal solutions without the need for mathematical models of the real process. However, convergence of the RL method to a reasonable control for complex processes is data-intensive and time-consuming. For this reason, the RL method can use the transfer learning approach to cope with this inefficient and slow data-driven learning. In fact, the transfer learning method takes advantage of what has been learned so far so that the learning process to solve a new objective does not require so much data and time. The results demonstrate that cumulatively achieving conflicting objectives can efficiently be used to approach the control of complex real processes without relying on mathematical models.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3