A Two-Stage Optimal Preventive Control Model Incorporating Transient Stability Constraints in the Presence of Multi-Resource Uncertainties

Author:

Ni Qiulong1,Sun Jingliao2,Zha Xianyu3,Zhou Taibin2,Sun Zelun3,Zhao Ming3

Affiliation:

1. State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310000, China

2. State Grid Wenzhou Electric Power Supply Company, Wenzhou 325000, China

3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 210000, China

Abstract

The volatility and uncertainty introduced by increasingly integrated renewable energy pose challenges to the reliable and stable operation of the power system. To mitigate the operation risks, a two-stage optimal preventive control model that incorporates transient stability constraints and considers uncertainties from multiple resources is proposed. First, the uncertainties of different re-sources are modeled, with which the non-sequential Monte Carlo sampling method is used to correspondingly generate the scenarios. Thereafter, a two-stage control model that balances operational safety and economy and realizes preventive control and emergency control is built. The operation schedule from the preventive control stage aims to minimize the transient stability probability and operation costs. If any faults destabilize the system, the emergency control stage will be activated immediately to help the system recover stability with minimal control costs. To expedite the solving of the two-stage model, a multi-objective particle swarm algorithm based on entropy-TOPSIS is proposed. Finally, the effectiveness of the proposed model and solving algorithm are validated with the modified IEEE118 node system.

Funder

State Grid Zhejiang Electric Power Co., Ltd.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3