Analysis of Heat Transfer of the Gas Head Cover of Diaphragm Compressors for Hydrogen Refueling Stations

Author:

Ren Shengdong1,Jia Xiaohan1ORCID,Zhang Jiatong1ORCID,Xin Dianbo2,Peng Xueyuan13ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China

2. Qingdao Hisense Hitachi Air-Conditioning Systems Co., Ltd., No. 218, Qianwangang Road, Qingdao 266001, China

3. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China

Abstract

The inadequate ability to dissipate heat of the gas head cover of the diaphragm compressor will result in its excessive temperature, which will put the operation of the hydrogen filling station at risk for safety issues and raise operating costs. This paper analyzed the structure and the heat transfer characteristics of the gas head cover, along with the relevant heat transfer boundaries, based on which a finite element simulation model of the temperature distribution was established. A test rig for the temperature test of a 22 MPa diaphragm compressor was built to validate this simulation model. The results indicated that the simulated temperatures agree well with the measured values, and the deviation is within 9.1%. Further, this paper proposed two head cover structures for enhancing the heat transfer according to the temperature field distribution characteristics, and the simulation and experimental verification were carried out, respectively. The findings demonstrate that the method of enhancing heat transfer around the centre area is more effective, reducing the highest temperature by 14.1 °C, because it greatly lowers thermal conduction resistance, which is the principal impediment to the heat dissipation of the gas head cover.

Funder

Inner Mongolia Major Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3