Exergy and Energy Analysis of the Shell-and-Tube Heat Exchanger for a Poultry Litter Co-Combustion Process

Author:

Alamu Samuel O.12ORCID,Lee Seong W.12,Qian Xuejun23ORCID

Affiliation:

1. Industrial and Systems Engineering Department, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA

2. Center for Advanced Energy Systems and Environmental Control Technologies (CAESECT), Morgan State University, Baltimore, MD 21251, USA

3. Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA

Abstract

Increasing production of poultry litter, and its associated problems, stimulates the need for generating useful energy in an environmentally friendly and efficient energy system, such as the use of shell-and-tube heat exchangers (STHE) in a fluidized-bed combustion (FBC) system. A holistic approach which involves the integration of the First Law of Thermodynamics (FLT) and Second Law of Thermodynamics (SLT) is required for conducting effective assessment of an energy system. In this study, the STHE designed by the CAESECT research group, which was integrated into the lab-scale FBC, was investigated to determine the maximum available work performed by the system and account for the exergy loss due to irreversibility. The effects of varying operating parameters and configuration of the space heaters connected to the STHE for space heating purposes were investigated in order to improve the thermal efficiency of the poultry litter-to-energy conversion process. Exergy and energy analysis performed on the STHE using flue gas and water media showed higher efficiency (75–92%) obtained via energy analysis, but much lower efficiency (12–25%) was obtained when the ambient conditions were factored into the exergy analysis, thus indicating huge exergy loss to the surroundings. From the obtained experimental data coupled with the simulation on parallel arrangement of air heaters, it was observed that exergy loss increased with increasing flue gas flow rate from 46.8–57.6 kg/h and with increasing ambient temperature from 8.8 °C to 25 °C. To lower the cost of STHE during final design, a larger temperature difference between the hot and cold flue gas is needed throughout the exchanger, which further increases the exergetic loss while maintaining an energy balance. In addition, this study also found the optimal conditions to reduce exergy loss and improve energy efficiency of the designed STHE. This study shows the possibility to evaluate energy systems using integration of exergy and energy analysis.

Funder

University School of Graduate Studies

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3