Sustainable Urban Street Comprising Permeable Pavement and Bioretention Facilities: A Practice

Author:

Dai YiqingORCID,Jiang JiwangORCID,Gu Xingyu,Zhao Yanjing,Ni Fujian

Abstract

Roadside bioretention and permeable pavements have proven effectiveness in rainwater filtration and waterlogging mitigation, but conventional street design approach could not accommodate their work in conjunction. In this research, possible roadside facilities allowing water transmission from permeable pavements and bioretention to the pipe system are proposed. Hydraulic properties of the comprised elements were analyzed, including rainfall intensity, permeable pavements, soil layers and pipe systems. A transformation method was formulated to obtain a successive time-intensity formula from conventional design parameters to describe the rainfall behavior, and therefore the water retention capacity of the bioretention could be considered. A test section of 1.6 km combining permeable pavements and roadside bioretention was constructed, and its hydraulic performance was predicted based on the proposed design method and Storm Water Management Model (SWMM). The research results suggest that the bioretention facilities and permeable pavements cooperate well in the test section. In a light rain event, the proposed street has favorable performance in rainwater collection and filtration. In a relatively intense rainstorm event, the street collects and filters water in the initial stage, but will have similar hydraulic performance to a conventional street once the retention facilities are saturated. Thus, no reduction in diameters of drainage pipes from conventional designs is suggested in similar projects.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3