Abstract
Roadside bioretention and permeable pavements have proven effectiveness in rainwater filtration and waterlogging mitigation, but conventional street design approach could not accommodate their work in conjunction. In this research, possible roadside facilities allowing water transmission from permeable pavements and bioretention to the pipe system are proposed. Hydraulic properties of the comprised elements were analyzed, including rainfall intensity, permeable pavements, soil layers and pipe systems. A transformation method was formulated to obtain a successive time-intensity formula from conventional design parameters to describe the rainfall behavior, and therefore the water retention capacity of the bioretention could be considered. A test section of 1.6 km combining permeable pavements and roadside bioretention was constructed, and its hydraulic performance was predicted based on the proposed design method and Storm Water Management Model (SWMM). The research results suggest that the bioretention facilities and permeable pavements cooperate well in the test section. In a light rain event, the proposed street has favorable performance in rainwater collection and filtration. In a relatively intense rainstorm event, the street collects and filters water in the initial stage, but will have similar hydraulic performance to a conventional street once the retention facilities are saturated. Thus, no reduction in diameters of drainage pipes from conventional designs is suggested in similar projects.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献