Minimizing the Density of Switch–Controller Latencies over Total Latency for Software-Defined Networks

Author:

Viveros Andres1ORCID,Adasme Pablo1ORCID,Dehghan Firoozabadi Ali2ORCID,San Juan Enrique1ORCID

Affiliation:

1. Department of Electrical Engineering, Universidad de Santiago de Chile, Avenida Víctor Jara Nº 3519, Santiago 9170124, Chile

2. Department of Electricity, Universidad Tecnológica Metropolitana, Av. Jose Pedro Alessandri 1242, Santiago 7800003, Chile

Abstract

This study examines the problem of minimizing the amount and distribution of time delays or latencies experienced by data as they travel from one point to another within a software-defined network (SDN). For this purpose, a model is proposed that seeks to represent the minimization of the distances between network switches in proportion to the total nodes in a network. The highlights of this study are the proposal of two mixed-integer quadratic models from a fractional initial version. The first is obtained by transforming (from the original fractional model) the objective function into equivalent constraints. The second one is obtained by splitting each term of the fraction with an additional variable. The two developed models have a relationship between switches and controllers with quadratic terms. For this reason, an algorithm is proposed that can solve these problems in a shorter CPU time than the proposed models. In the development of this research work, we used real benchmarks and randomly generated networks, which were to be solved by all the proposed models. In addition, a few additional random networks that are larger in size were considered to better evaluate the performance of the proposed algorithm. All these instances are evaluated for different density scenarios. More precisely, we impose a constraint on the number of controllers for each network. All tests were performed using our models and the computational power of the Gurobi solver to find the optimal solutions for most of the instances. To the best of our knowledge, this work represents a novel mathematical representation of the latency density management problem in an SDN to measure the efficiency of the network. A detailed analysis of the test results shows that the effectiveness of the proposed models is closely related to the size of the studied networks. Furthermore, it can be noticed that the performance of the second model compared to the first one presents better behavior in terms of CPU times, the optimal solutions obtained, and the reduced Mipgaps obtained using the solver. These findings provide a deep understanding of how the models operate and how the optimization dynamics contribute to improving the efficiency and performance of SDNs.

Funder

Projects Dicyt

ANID/FONDECYT Iniciación

Universidad Tecnológica Metropolitana

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3