Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning

Author:

Boaretto Bruno R. R.ORCID,Budzinski Roberto C.ORCID,Rossi Kalel L.ORCID,Prado Thiago L.ORCID,Lopes Sergio R.ORCID,Masoller CristinaORCID

Abstract

Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We have recently proposed a new method based on training a machine learning algorithm to predict the temporal correlation parameter, α, of flicker noise (FN) time series. The algorithm is trained using as input features the probabilities of ordinal patterns computed from FN time series, xαFN(t), generated with different values of α. Then, the ordinal probabilities computed from the time series of interest, x(t), are used as input features to the trained algorithm and that returns a value, αe, that contains meaningful information about the temporal correlations present in x(t). We have also shown that the difference, Ω, of the permutation entropy (PE) of the time series of interest, x(t), and the PE of a FN time series generated with α=αe, xαeFN(t), allows the identification of the underlying determinism in x(t). Here, we apply our methodology to different datasets and analyze how αe and Ω correlate with well-known quantifiers of chaos and complexity. We also discuss the limitations for identifying determinism in highly chaotic time series and in periodic time series contaminated by noise. The open source algorithm is available on Github.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Canada First Research Excellence Fund

NSF NeuroNex

Deutscher Akademischer Austauschdienst

Ministerio de Ciencia e Innovación

Institució Catalana de Recerca i Estudis Avançats

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference50 articles.

1. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis

2. A Wavelet Tour of Signal Processing;Mallat,1998

3. Nonlinear Time Series Analysis;Kantz,2005

4. Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control;Brunton,2019

5. hctsa : A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3