Skeleton Driven Action Recognition Using an Image-Based Spatial-Temporal Representation and Convolution Neural Network

Author:

Silva ViníciusORCID,Soares FilomenaORCID,Leão Celina P.ORCID,Esteves João Sena,Vercelli GianniORCID

Abstract

Individuals with Autism Spectrum Disorder (ASD) typically present difficulties in engaging and interacting with their peers. Thus, researchers have been developing different technological solutions as support tools for children with ASD. Social robots, one example of these technological solutions, are often unaware of their game partners, preventing the automatic adaptation of their behavior to the user. Information that can be used to enrich this interaction and, consequently, adapt the system behavior is the recognition of different actions of the user by using RGB cameras or/and depth sensors. The present work proposes a method to automatically detect in real-time typical and stereotypical actions of children with ASD by using the Intel RealSense and the Nuitrack SDK to detect and extract the user joint coordinates. The pipeline starts by mapping the temporal and spatial joints dynamics onto a color image-based representation. Usually, the position of the joints in the final image is clustered into groups. In order to verify if the sequence of the joints in the final image representation can influence the model’s performance, two main experiments were conducted where in the first, the order of the grouped joints in the sequence was changed, and in the second, the joints were randomly ordered. In each experiment, statistical methods were used in the analysis. Based on the experiments conducted, it was found statistically significant differences concerning the joints sequence in the image, indicating that the order of the joints might impact the model’s performance. The final model, a Convolutional Neural Network (CNN), trained on the different actions (typical and stereotypical), was used to classify the different patterns of behavior, achieving a mean accuracy of 92.4% ± 0.0% on the test data. The entire pipeline ran on average at 31 FPS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3