Affiliation:
1. Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada
Abstract
This study investigates the influence of temperature and loading rate on the Mode I and Mode II interlaminar fracture behavior of carbon-nanotubes-enhanced carbon-fiber-reinforced polymer (CNT-CFRP). CNT-induced toughening of the epoxy matrix is characterized by producing CFRP with varying loading of CNT areal density. CNT-CFRP samples were subjected to varying loading rates and testing temperatures. Fracture surfaces of CNT-CFRP were analyzed using scanning electron microscopy (SEM) imaging. Mode I and Mode II interlaminar fracture toughness increased with increasing amount of CNT to an optimum value of 1 g/m2, then decreased at higher CNT amounts. Moreover, it was found that CNT-CFRP fracture toughness increased linearly with the loading rate in Mode I and Mode II. On the other hand, different responses to changing temperature were observed; Mode I fracture toughness increased when elevating the temperature, while Mode II fracture toughness increased with increasing up to room temperature and decreased at higher temperatures.
Funder
NATURAL SCIENCES and ENGINEERING RESEARCH COUNCIL of CANADA (NSERC) CREATE
York University Lassonde School of Engineering
Subject
General Materials Science,General Chemical Engineering