Transport Characteristics of Silicon Multi-Quantum-Dot Transistor Analyzed by Means of Experimental Parametrization Based on Single-Hole Tunneling Model

Author:

Lee Youngmin12ORCID,Jun Hyewon1,Park Seoyeon1,Kim Deuk Young12,Lee Sejoon12ORCID

Affiliation:

1. Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea

2. Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea

Abstract

The transport characteristics of a gate-all-around Si multiple-quantum-dot (QD) transistor were studied by means of experimental parametrization using theoretical models. The device was fabricated by using the e-beam lithographically patterned Si nanowire channel, in which the ultrasmall QDs were self-created along the Si nanowire due to its volumetric undulation. Owing to the large quantum-level spacings of the self-formed ultrasmall QDs, the device clearly exhibited both Coulomb blockade oscillation (CBO) and negative differential conductance (NDC) characteristics at room temperature. Furthermore, it was also observed that both CBO and NDC could evolve along the extended blockade region within wide gate and drain bias voltage ranges. By analyzing the experimental device parameters using the simple theoretical single-hole-tunneling models, the fabricated QD transistor was confirmed as comprising the double-dot system. Consequently, based on the analytical energy-band diagram, we found that the formation of ultrasmall QDs with imbalanced energetic natures (i.e., imbalanced quantum energy states and their imbalanced capacitive-coupling strengths between the two dots) could lead to effective CBO/NDC evolution in wide bias voltage ranges.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3