Assessment of the Mechanisms of Summer Thermal Environment of Waterfront Space in China’s Cold Regions

Author:

Fei FanORCID,Wang YanORCID,Jia Xiaoyun

Abstract

Water is an essential part of the urban ecosystem and plays a vital role in alleviating urban heat island (UHI) problems. The contribution toward UHI mitigation made by bodies of water needs to be ascertained to establish waterfront thermal environment construction standards. In this study, the thermal environment of the waterfront space of Tianjin in the cold regions of China was the research object. Through a survey including 141 valid questionnaires and the field measurement of four typical waterfront spaces in Tianjin, the thermal demand characteristics of recreational use for the waterfront environment and the influence of water on microclimate are discussed, supplemented by results from low-altitude infrared remote sensing technology, which was mainly used to obtain a wider range of infrared thermal images with higher accuracy. To improve the urban heat island effect and the quality of the ecological environment, this paper used outdoor thermal environment simulation software to quantitatively analyze the thermal environmental impact of outdoor public activity spaces around the representative urban body of water and proposes the optimization scheme of the waterfront space’s thermal environment. The results show that, based on the factors of water itself, the most economical water width was 70–80 m, and the cooling effect intensity of water had an essential correlation with the distance between the measured site and the water center. In terms of the environmental factors around the water, when the green lawn of the waterfront space was 12 m and the water shore’s geometric form was S-shaped, this could improve the cooling effect of water significantly. Waterfront activity spaces should focus on thermal comfort on the east and south water shores. It is expected that this study could provide practical implications and useful guidance for the planning and design of urban waterfront space in China’s cold regions.

Funder

National Natural Science Foundation of China

Opening Fund of State Key Laboratory of Green Building in Western China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3