Abstract
Slime Mould Algorithm (SMA) is a newly designed meat-heuristic search that mimics the nature of slime mould during the oscillation phase. This is demonstrated in a unique mathematical formulation that utilizes adjustable weights to influence the sequence of both negative and positive propagation waves to develop a method to link food supply with intensive exploration capacity and exploitation affinity. The study shows the usage of the SM algorithm to solve a non-convex and cost-effective Load Dispatch Problem (ELD) in an electric power system. The effectiveness of SMA is investigated for single area economic load dispatch on large-, medium-, and small-scale power systems, with 3-, 5-, 6-, 10-, 13-, 15-, 20-, 38-, and 40-unit test systems, and the results are substantiated by finding the difference between other well-known meta-heuristic algorithms. The SMA is more efficient than other standard, heuristic, and meta-heuristic search strategies in granting extremely ambitious outputs according to the comparison records.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献