Robot Path Planning Method Based on Indoor Spacetime Grid Model

Author:

Zhang Huangchuang,Zhuang Qingjun,Li Ge

Abstract

In the context of digital twins, smart city construction and artificial intelligence technology are developing rapidly, and more and more mobile robots are performing tasks in complex and time-varying indoor environments, making, at present, the unification of modeling, dynamic expression, visualization of operation, and wide application between robots and indoor environments a pressing problem to be solved. This paper presents an in-depth study on this issue and summarizes three major types of methods: geometric modeling, topological modeling, and raster modeling, and points out the advantages and disadvantages of these three types of methods. Therefore, in view of the current pain points of robots and complex time-varying indoor environments, this paper proposes an indoor spacetime grid model based on the three-dimensional division framework of the Earth space and innovatively integrates time division on the basis of space division. On the basis of the model, a dynamic path planning algorithm for the robot in the complex time-varying indoor environment is designed, that is, the Spacetime-A* algorithm (STA* for short). Finally, the indoor spacetime grid modeling experiment is carried out with real data, which verifies the feasibility and correctness of the spacetime relationship calculation algorithm encoded by the indoor spacetime grid model. Then, experiments are carried out on the multi-group path planning algorithms of the robot under the spacetime grid, and the feasibility of the STA* algorithm under the indoor spacetime grid and the superiority of the spacetime grid are verified.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3