Classification of Eurasian Watermilfoil (Myriophyllum spicatum) Using Drone-Enabled Multispectral Imagery Analysis

Author:

Brooks ColinORCID,Grimm Amanda,Marcarelli Amy M.ORCID,Marion Nicholas P.,Shuchman Robert,Sayers MichaelORCID

Abstract

Remote sensing approaches that could identify species of submerged aquatic vegetation (SAV) and measure their extent in lake littoral zones would greatly enhance SAV study and management, especially if these approaches can provide faster or more accurate results than traditional field methods. Remote sensing with multispectral sensors can provide this capability, but SAV identification with this technology must address the challenges of light extinction in aquatic environments where chlorophyll, dissolved organic carbon, and suspended minerals can affect water clarity and the strength of the sensed light signal. Here, we present an uncrewed aerial system (UAS)-enabled methodology to identify the extent of the invasive SAV species Myriophyllum spicatum (Eurasian watermilfoil, or EWM), primarily using a six-band Tetracam multispectral camera, flown over sites in the Les Cheneaux Islands area of northwestern Lake Huron, Michigan, USA. We analyzed water chemistry and light data and found our sites clustered into sites with higher and lower water clarity, although all sites had relatively high water clarity. The overall average accuracy achieved was 76.7%, with 78.7% producer’s and 77.6% user’s accuracy for the EWM. These accuracies were higher than previously reported from other studies that used remote sensing to map SAV. Our study found that two tested scale parameters did not lead to significantly different classification accuracies between sites with higher and lower water clarity. The EWM classification methodology described here should be applicable to other SAV species, especially if they have growth patterns that lead to high amounts of biomass relative to other species in the upper water column, which can be detected with the type of red-edge and infrared sensors deployed for this study.

Funder

Environmental Protection Agency

Michigan Department of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3