Abstract
River ice segmentation, used for surface ice concentration estimation, is important for validating river processes and ice-formation models, predicting ice jam and flooding risks, and managing water supply and hydroelectric power generation. Furthermore, discriminating between anchor ice and frazil ice is an important factor in understanding sediment transport and release events. Modern deep learning techniques have proved to deliver promising results; however, they can show poor generalization ability and can be inefficient when hardware and computing power is limited. As river ice images are often collected in remote locations by unmanned aerial vehicles with limited computation power, we explore the performance-latency trade-offs for river ice segmentation. We propose a novel convolution block inspired by both depthwise separable convolutions and local binary convolutions giving additional efficiency and parameter savings. Our novel convolution block is used in a shallow architecture which has 99.9% fewer trainable parameters, 99% fewer multiply–add operations, and 69.8% less memory usage than a UNet, while achieving virtually the same segmentation performance. We find that the this network trains fast and is able to achieve high segmentation performance early in training due to an emphasis on both pixel intensity and texture. When compared to very efficient segmentation networks such as LR-ASPP with a MobileNetV3 backbone, we achieve good performance (mIoU of 64) 91% faster during training on a CPU and an overall mIoU that is 7.7% higher. We also find that our network is able to generalize better to new domains such as snowy environments.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献