Abstract
Antarctic basal water storage variation (BWSV) refers to mass changes of basal water beneath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack of direct observation. This paper proposes a layered gravity density forward/inversion iteration method to investigate Antarctic BWSV based on multi-source satellite observations and relevant models. During 2003–2009, BWSV increased at an average rate of 43 ± 23 Gt/yr, which accounts for 29% of the previously documented total mass loss rate (−76 ± 20 Gt/yr) of AIS. Major uncertainty arises from satellite gravimetry, satellite altimetry, the glacial isostatic adjustment (GIA) model, and the modelled basal melting rate. We find that increases in basal water mainly occurred in regions with widespread active subglacial lakes, such as the Rockefeller Plateau, Siple Coast, Institute Ice Stream regions, and marginal regions of East Antarctic Ice Sheet (EAIS), which indicates the increased water storage in these active subglacial lakes, despite the frequent water drainage events. The Amundsen Sea coast experienced a significant loss during the same period, which is attributed to the basal meltwater discharging into the Amundsen Sea through basal channels.
Funder
National Natural Science Foundation of China
Independent project of State Key Laboratory of Geodesy and Earth's Dynamics
Subject
General Earth and Planetary Sciences
Reference68 articles.
1. Basal melt beneath whillans ice stream and ice streams A and C, west Antarctica;Joughin,2003
2. A decade of progress in observing and modelling Antarctic subglacial water systems
3. Rapid discharge connects Antarctic subglacial lakes
4. Active lakes in Antarctica survive on a sedimentary substrate–Part 1: Theory;Carter;Cryosphere Discuss.,2015
5. The role of subglacial water in ice-sheet mass balance
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献