Author:
Yuan Shuyun,Li Ying,Gao Jinhui,Bao Fangwen
Abstract
Aerosol optical and chemical properties play a major role in the retrieval of PM2.5 concentrations based on aerosol optical depth (AOD) data from satellites in the conventional semiempirical model (SEM). However, limited observation information hinders the high-resolution estimation of PM2.5. Therefore, a new method for evaluating near-surface PM2.5 at high spatial resolution is developed by coupling the SEM and the chemical transport model (CTM)-based numerical (CSEN) model. The numerical model can provide large-scale information for aerosol properties with high spatial resolution at a large scale based on emissions and meteorology, though it can still be biased in simulating absolute PM2.5 concentrations. Therefore, the two crucial aerosol characteristic parameters, including the coefficient integrated humidity effect (γ′) and the comprehensive reference value of aerosol properties (K) in SEM, have been redefined using the WRF-Chem numerical model. Improved model performance was observed for these results compared with the original SEM results. The monthly averaged correlation coefficients (R) by CSEN were 0.92, 0.82, 0.84, and 0.83 in January, April, July, and October, respectively, whereas those of the SEM were 0.80, 0.77, 0.72, and 0.72, respectively. All the statistical metrics of the model validation showed significant improvements in all seasons. The reduced biases of estimated PM2.5 by CSEN indicated the effect of hygroscopic growth and aerosol properties affected by the meteorology on the relationship between AOD and estimated PM2.5 concentrations, especially in winter and summer. The better performance of the CSEN model provides insight for air quality monitoring at different scales, which supplies important information for air pollution control policies and health impact analysis.
Funder
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献