Deep Learning-Based Object Detection Techniques for Remote Sensing Images: A Survey

Author:

Li ZhengORCID,Wang YongchengORCID,Zhang NingORCID,Zhang Yuxi,Zhao Zhikang,Xu Dongdong,Ben GuangliORCID,Gao Yunxiao

Abstract

Object detection in remote sensing images (RSIs) requires the locating and classifying of objects of interest, which is a hot topic in RSI analysis research. With the development of deep learning (DL) technology, which has accelerated in recent years, numerous intelligent and efficient detection algorithms have been proposed. Meanwhile, the performance of remote sensing imaging hardware has also evolved significantly. The detection technology used with high-resolution RSIs has been pushed to unprecedented heights, making important contributions in practical applications such as urban detection, building planning, and disaster prediction. However, although some scholars have authored reviews on DL-based object detection systems, the leading DL-based object detection improvement strategies have never been summarized in detail. In this paper, we first briefly review the recent history of remote sensing object detection (RSOD) techniques, including traditional methods as well as DL-based methods. Then, we systematically summarize the procedures used in DL-based detection algorithms. Most importantly, starting from the problems of complex object features, complex background information, tedious sample annotation that will be faced by high-resolution RSI object detection, we introduce a taxonomy based on various detection methods, which focuses on summarizing and classifying the existing attention mechanisms, multi-scale feature fusion, super-resolution and other major improvement strategies. We also introduce recognized open-source remote sensing detection benchmarks and evaluation metrics. Finally, based on the current state of the technology, we conclude by discussing the challenges and potential trends in the field of RSOD in order to provide a reference for researchers who have just entered the field.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3