High Wind Geophysical Model Function Modeling for the HY-2A Scatterometer Using Neural Network

Author:

Xie Xuetong,Wang Jing,Lin MingsenORCID

Abstract

Under low to medium wind speeds and no rainfall, the retrieved vector wind from a scatterometer is accurate and reliable. However, under high wind conditions, the currently used geophysical model function (GMF), such as NSCAT-2, for wind vector retrieval has the disadvantage of overestimating the backscattering coefficient, which leads to a decrease in the quality of the retrieved ocean surface winds. To enhance the wind retrieval precision of the HY-2A scatterometer under high wind conditions, a new GMF for high wind (HW-GMF) is established by using the neural network method based on the backscattering coefficient data of the HY-2A scatterometer combined with the wind speed data of the Special Sensor Microwave Imager (SSM/I) and the Final (FNL) operational global analysis wind direction data from the National Centers for Environmental Prediction (NCEP). The absolute value of the mean deviation between the predicted σ0 by the HW-GMF and the measured σ0 by the HY-2A scatterometer is less than 0.1 dB, indicating that the HW-GMF has high accuracy. To verify the HW-GMF performance, the wind field inversion accuracy of the HW-GMF is compared with that of the NSCAT-2 GMF, a GMF currently used in the data processing of the HY-2A scatterometer. The experimental results show that the deviation between the HW-GMF retrieved wind speed and the SSM/I wind speed is within 2 m/s in the high wind speed range of 15–35 m/s, indicating that the HW-GMF improves the precision of the wind speed inversion of the HY-2A scatterometer under high wind speed conditions.

Funder

National Natural Science Foundation of China

Special Fund Project for Marine Economic Development of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3