ANC–BNC Titrations and Geochemical Modeling for Characterizing Calcareous and Siliceous Mining Waste

Author:

Drapeau Clémentine,Delolme Cécile,Vézin Clément,Blanc Denise,Baumgartl ThomasORCID,Edraki MansourORCID,Lassabatere LaurentORCID

Abstract

Pyrite and calcite are mineral phases that play a major role in acid and neutral mine drainage processes. However, the prediction of acid mine drainage (AMD) or contaminated neutral drainage (CND) requires knowledge of the mineral composition of mining waste and the related potential for element release. This paper studies the combination of acid–base neutralizing capacity (ANC–BNC) with geochemical modeling for the characterization of mining waste and prediction of AMD and CND. The proposed approach is validated with three synthetic mineral assemblages: (1) siliceous sand with pyrite only, representing mining waste responsible for AMD, (2) siliceous sand with calcite and pyrite, representing calcareous waste responsible for CND, and (3) siliceous sand with calcite only, simulating calcareous matrices without any pyrite. The geochemical modeling approach using PHREEQC software was used to model pH evolution and main element release as a function of the added amount of acid or base over the entire pH range: 1 < pH < 13. For calcareous matrices (sand with calcite), the results are typical of a carbonated environment, the geochemistry of which is well known. For matrices containing pyrite, the results identify different pH values favoring the dissolution of pyrite: pH = 2 in a pyrite-only environment and pH = 6 where pyrite coexists with calcite. The neutral conditions can be explained by the buffering capacity of calcite, which allows iron oxyhydroxide precipitation. Major element release is then related to the dissolution and precipitation of the mineral assemblages. The geochemical modeling allows the prediction of element speciation in the solid and liquid phases. Our findings clearly prove the potential of combined ANC–BNC experiments along with geochemical modeling for the characterization of mining waste and the assessment of risk of AMD and CND.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3