Abstract
Tailings from inactive uranium mine sites represent a potential secondary source of rare earth elements (REEs). For this study, two mine tailings (DT and RAT) from restored uranium sites in Ontario, Canada, were used. Bioleaching experiments were conducted with a mix of native sulfur- and iron-oxidizing bacteria to test the solubilization of REEs, U and Th at different temperatures (20, 30 and 40 °C). The selective recovery of REEs from bioleaching solution was evaluated using different ion exchange resins. The mineralogical characterization revealed that DT tailings were mainly composed of quartz, pyrite, gypsum and silicates, whereas RAT tailings were mainly composed of quartz. The maximum solubilization of heavy and light REEs (HREEs and LREEs, respectively), Th and U reached 54%, 6%, 60% and 51% for RAT after 35 days at pH 2, T = 30 °C and pulp density = 10% (w/v). Higher extraction yields were obtained for DT, with 58% of HREEs, 14% of LREEs, 85% of Th and 89% of U solubilized under the same conditions. The use of Lewatit TP272 resin for the recovery of Sc (94%) and U (99%) followed by the Lewatit SP112 resin for the recovery of Th (57%) and REEs (81% LREEs and 65% HREEs) seemed a promising method for the co-extraction of the key elements from the bioleaching solution.
Funder
Fonds de recherche du Québec – Nature et technologies
Canada Excellence Research Chairs, Government of Canada
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献