Low Molecular Weight Organic Acids Increase Cd Accumulation in Sunflowers through Increasing Cd Bioavailability and Reducing Cd Toxicity to Plants

Author:

Lu HongfeiORCID,Qiao Dongmei,Han Yang,Zhao Yulong,Bai Fangfang,Wang Yadan

Abstract

The use of low molecular weight organic acids (LMWOAs) for the phytoremediation of heavy metals has become a promising technique. We chose five kinds of organic acids (oxalic acid (OA), acetic acid (AA), tartaric acid (TA), malic acid (MA), and citric acid (CA)) with six application rates (1, 2, 3, 4, 5, and 6 mmol/kg) and planted sunflowers (Helianthus annuus L.) in Cd-polluted soil to study the efficiency of the phytoremediation of Cd and the degree of Cd toxicity to plants. Treatment with no acid application served as the control (CK). We analyzed the plant height dry matter and the Cd and nonprotein sulfhydryl (NPT) contents in the soil and plant tissues. OA, AA, TA, MA, and CA increased plant heights by 17.6–47.40%, 21.25–39.17%, 12.5–35.52, 5.10–30.50%, and 16.15–49.17%, respectively; shoot biomass of the sunflowers was increased except with MA. NPT decreased under LMWOA application, which, in the roots, increased with the increase in root Cd under LMWOA treatment; however, there was no obvious relationship in the stems and leaves. The composition of Cd in the soil changed significantly under the LMWOA treatments compared to the CK, and the changes in carbonate Cd and Fe-Mn oxide Cd were the most prominent. The plant Cd accumulation of OA, AA, TA, MA, and CA increased by 43.31%, 55.25%, 48.69%, 0.52%, and 32.94%, respectively, and the increase in root Cd content and shoot dry matter quality promoted the increase in Cd accumulation. The LMWOAs were more likely to affect the phytoremediation of Cd by changing total P (TP) rather than total N (TN).

Funder

Program of the National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3