Top-Down Synthesis of NaP Zeolite from Natural Zeolite for the Higher Removal Efficiency of Cs, Sr, and Ni

Author:

Hong Seokju,Um Wooyong

Abstract

A solid phase of natural zeolite was transformed to Na-zeolite P (NaP zeolite) by a “top-down approach” hydrothermal reaction using 3 M of NaOH solution in a 96 °C oven. Time-dependent X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), XRF, and scanning electron microscopy (SEM) analysis as well as kinetic, isotherm, and cation exchange capacity experiments were performed to understand the mechanism of mineral transition from natural zeolite to NaP zeolite. The XRD crystal peaks of the natural zeolite decreased (decrystallization phase) first, and then the NaP zeolite XRD crystal peaks increased gradually (recrystallization phase). From the XRF results, the dissolution rate of Si was slow in the recrystallization phase, while it was rapid in the decrystallization phase. The specific surface area measured by BET analysis was higher in NaP zeolite (95.95 m2/g) compared to that of natural zeolite (31.35 m2/g). Furthermore, pore structure analysis confirmed that NaP zeolites have more micropores than natural zeolite. In the kinetic experiment, the results showed that the natural zeolite and NaP zeolite were well matched with a pseudo-second-order kinetic model, and reached equilibrium within 24 h. The isotherm experiment results confirmed that both zeolites were well matched with the Langmuir isotherm, and the maximum removal capacity (Qmax) values of Sr and Ni were highly increased in NaP zeolite. In addition, the cation exchange capacity (CEC) experiment showed that NaP zeolite has an enhanced CEC of 310.89 cmol/kg compared to natural zeolite (CEC = 119.19 cmol/kg). In the actual batch sorption test, NaP zeolite (35.3 mg/g) still showed high Cs removal efficiency though it was slightly lower than the natural zeolite (39.0 mg/g). However, in case of Sr and Ni, NaP zeolite (27.9 and 27.8 mg/g, respectively) showed a much higher removal efficiency than natural zeolite (4.9 and 5.5 mg/g for Sr and Ni, respectively). This suggests that NaP zeolite, synthesized by a top-down desilication method, is more practical to remove mixed radionuclides from a waste solution.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3