Lithogeochemical and Hyperspectral Halos to Ag-Zn-Au Mineralization at Nimbus in the Eastern Goldfields Superterrane, Western Australia

Author:

Hollis Steven P.,Foury Sabri,Caruso Stefano,Johnson Sean,Barrote VitorORCID,Pumphrey Andrew

Abstract

With new advances in rapid-acquisition geochemical and hyperspectral techniques, exploration companies are now able to detect subtle halos surrounding orebodies at minimal expense. The Nimbus Ag-Zn-(Au) deposit is unique in the Archean Yilgarn Craton of Western Australia. Due to its mineralogy, alteration assemblages, geochemical affinity, and tectonic setting, it is interpreted to represent a shallow water (~650 mbsl) and low-temperature (<250 °C) volcanogenic massive sulfide (VMS) deposit with epithermal characteristics (i.e., a hybrid bimodal felsic deposit). We present a detailed paragenetic account of the Nimbus deposit, and establish lithogeochemical and hyperspectral halos to mineralization to aid exploration. Mineralization at Nimbus is characterized by early units of barren massive pyrite that replace glassy dacitic lavas, and underlying zones of polymetallic sulfides that replace autoclastic monomict dacite breccias. The latter are dominated by pyrite-sphalerite-galena, a diverse suite of Ag-Sb ± Pb ± As ± (Cu)-bearing sulfosalts, minor pyrrhotite, arsenopyrite, and rare chalcopyrite. The main sulfosalt suite is characterized by pyrargyrite, and Ag-rich varieties of boulangerite, tetrahedrite, and bournonite. Zones of sulfide mineralization in quartz-sericite(±carbonate)-altered dacite are marked by significant mass gains in Fe, S, Zn, Pb, Sb, Ag, As, Cd, Ni, Cu, Ba, Co, Cr, Tl, Bi, and Au. Basaltic rocks show reduced mass gains in most elements, with zones of intense quartz-chlorite-carbonate±fuchsite alteration restricted to thick sequences of hyaloclastite, and near contacts with dacitic rocks. Broad zones of intense silica-sericite alteration surround mineralization in dacite, and are marked by high Alteration Index and Chlorite-Carbonate-Pyrite Index (CCPI) values, strong Na-Ca depletion, and an absence of feldspar (albite) in thermal infrared (TIR) data. White mica compositions are predominantly muscovitic in weakly altered sections of the dacitic footwall sequence. More paragonitic compositions are associated with zones of increased sericitization and high-grade polymetallic sulfide mineralization. Chlorite in dacitic rocks often occurs adjacent to zones of sulfide mineralization and is restricted to narrow intervals. Carbonate abundance is sporadic in dacite, but is most abundant outside the main zones of Na-Ca depletion. Basaltic rocks are characterized by strongly paragonitic white mica compositions, and abundant chlorite and carbonate. Shifts from Ca carbonates and Fe-rich chlorites to more Mg-rich compositions of both minerals occur in more intensely hydrothermally altered basaltic hyaloclastite, and near contacts with dacitic rocks. Hanging-wall polymict conglomerates are characterized by minor amounts of muscovitic to phengitic white mica (2205–2220 nm), and an absence of chlorite and carbonate alteration.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3