Application of Brown Coal and Activated Carbon for the Immobilization of Metal Forms in Soil, along with Their Verification Using Generalized Linear Models (GLMs)

Author:

Pusz Agnieszka,Wiśniewska Magdalena,Rogalski Dominik

Abstract

Various factors can lead to the transformation of metal forms and to an increase in their solubility and, consequently, their mobility. One solution to the problem of increased solubility is the use of carbons as additives to soil in order to limit the potential migration of contaminants. The aim of this study was to determine the effect of using brown coal and activated carbon on metal forms that are available to plants. The mineral composition of the coals used in a pot experiment was analyzed. Observations were carried out with a JJSM-6380 LA scanning electron microscope (SEM) connected to an EDS electron micro-probe. The total contents of Zn, Cd, Pb and Cu in the assessed soils as well as the content of available metal forms were determined after single extractions with different reagents, namely 1 M NH4NO3, DTPA and 1 M HCl. Generalized linear models (GLMs) were used to evaluate the effectiveness of the stabilization methods in a long-term pot experiment. The carbons reduced the percentage of these forms relative to the total metal content in the soil. After adding brown coal, Zn, Cd, Pb and Cu forms were reduced by up to 32%, 30%, 33% and 43%, respectively. After adding activated carbon, the metal forms of Zn, Cd, Pb and Cu were reduced by up to 47%, 44%, 40% and 50%, respectively. The following order of extracted metal forms with different solutions was found: HCl: Zn > Pb > Cu > Cd; DTPA: Pb > Zn > Cu > Cd; NH4NO3: Zn > Cu > Pb > Cd. Eight years after setting up the pot experiment, the contents of humic substances in soils with the addition of both tested carbons were compared, and the soils with added carbons were found to have a stable content of humic fractions. The costs of remediation through the stabilization method using the tested brown coal and activated carbons do not exceed USD 75/t (taking into account the double doses of both carbons).

Funder

Politechnika Warszawska

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference72 articles.

1. Heavy Metals in Soils;Alloway,1995

2. Analiza Śladowa Gleb i Roślin. Problemy Jakości Analizy śladowej w Badaniach Środowiska Przyrodniczego;Kabata-Pendias,1998

3. Metale Ciężkie w Glebach Zanieczyszczonych Emisjami Hut Miedzi–Formy i Rozpuszczalność;Karczewska,2002

4. Copper, nickel and zinc contamination in soils within the precincts of mining and landfilling environments

5. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3