Technical Solution for Monitoring Climatically Active Gases Using the Turbulent Pulsation Method

Author:

Kulakova Ekaterina1ORCID,Muravyova Elena1ORCID

Affiliation:

1. Department of Automated Technological and Information Systems, Institute of Chemical Technology and Engineering, Ufa State Petroleum Technological University, Sterlitamak 453103, Russia

Abstract

This article introduces a technical solution for investigating the movement of gases in the atmosphere through the turbulent pulsation method. A comprehensive control system was developed to measure and record the concentrations of carbon dioxide and methane, temperature, humidity, atmospheric air pressure, wind direction, and speed in the vertical plane. The selection and validation of sensor types and brands for each parameter, along with the system for data collection, registration, and device monitoring, were meticulously executed. The AHT21 + ENS160 sensor was chosen for temperature measurement, the BME680 was identified as the optimal sensor for humidity and atmospheric pressure control, Eu-M-CH4-OD was designated for methane gas analysis, and CM1107N for carbon dioxide measurements. Wind direction and speed are best measured with the SM5386V anemometer. The control system utilizes the Arduino controller, and software was developed for the multicomponent gas analyzer.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3