Ionization Gas Sensor Using Suspended Carbon Nanotube Beams

Author:

Arunachalam Shivaram,Izquierdo Ricardo,Nabki FredericORCID

Abstract

An ionization sensor based on suspended carbon nanotubes (CNTs) was presented. A suspended CNT beam was fabricated by a low-temperature surface micromachining process using SU8 photoresist as the sacrificial layer. Application of a bias to the CNT beam generated very high non-linear electric fields near the tips of individual CNTs sufficient to ionize target gas molecules and initiate a breakdown current. The sensing mechanism of the CNT ionization sensor was discussed. The sensor response was tested in air, nitrogen, argon, and helium ambients. Each gas demonstrated a unique breakdown signature. Further, the sensor was tested with gaseous mixtures. The sensor exhibited good long-term stability and had comparable performance to other reported CNT-based ionization sensors in literature, which use high-temperature vapor deposition methods to grow CNTs. The sensor notably allowed for lower ionization voltages due to its reduced ionization gap size.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3