The Use of Machine Learning to Predict Prevalence of Subclinical Mastitis in Dairy Sheep Farms

Author:

Kiouvrekis Yiannis12,Vasileiou Natalia G. C.3,Katsarou Eleni I.4,Lianou Daphne T.4,Michael Charalambia K.4,Zikas Sotiris1,Katsafadou Angeliki I.1ORCID,Bourganou Maria V.1ORCID,Liagka Dimitra V.3,Chatzopoulos Dimitris C.1,Fthenakis George C.4

Affiliation:

1. Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece

2. School of Business, University of Nicosia, Nicosia 2417, Cyprus

3. Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece

4. Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece

Abstract

The objective of the study was to develop a computational model with which predictions regarding the level of prevalence of mastitis in dairy sheep farms could be performed. Data for the construction of the model were obtained from a large Greece-wide field study with 111 farms. Unsupervised learning methodology was applied for clustering data into two clusters based on 18 variables (17 independent variables related to health management practices applied in farms, climatological data at the locations of the farms, and the level of prevalence of subclinical mastitis as the target value). The K-means tool showed the highest significance for the classification of farms into two clusters for the construction of the computational model: median (interquartile range) prevalence of subclinical mastitis among farms was 20.0% (interquartile range: 15.8%) and 30.0% (16.0%) (p = 0.002). Supervised learning tools were subsequently used to predict the level of prevalence of the infection: decision trees, k-NN, neural networks, and Support vector machines. For each of these, combinations of hyperparameters were employed; 83 models were produced, and 4150 assessments were made in total. A computational model obtained by means of Support vector machines (kernel: ‘linear’, regularization parameter C = 3) was selected. Thereafter, the model was assessed through the results of the prevalence of subclinical mastitis in 373 records from sheep flocks unrelated to the ones employed for the selection of the model; the model was used for evaluation of the correct classification of the data in each of 373 sets, each of which included a test (prediction) subset with one record that referred to the farm under assessment. The median prevalence of the infection in farms classified by the model in each of the two categories was 10.4% (5.5%) and 36.3% (9.7%) (p < 0.0001). The overall accuracy of the model for the results presented by the K-means tool was 94.1%; for the estimation of the level of prevalence (<25.0%/≥25.0%) in the farms, it was 96.3%. The findings of this study indicate that machine learning algorithms can be usefully employed in predicting the level of subclinical mastitis in dairy sheep farms. This can facilitate setting up appropriate health management measures for interventions in the farms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3