Amur Tiger Individual Identification Based on the Improved InceptionResNetV2

Author:

Wu Ling12,Jinma Yongyi1,Wang Xinyang134ORCID,Yang Feng134,Xu Fu134,Cui Xiaohui134ORCID,Sun Qiao134

Affiliation:

1. School of Information and Technology (School of Artificial Intelligence), Beijing Forestry University, Beijing 100083, China

2. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China

3. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

4. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China

Abstract

Accurate and intelligent identification of rare and endangered individuals of flagship wildlife species, such as Amur tiger (Panthera tigris altaica), is crucial for understanding population structure and distribution, thereby facilitating targeted conservation measures. However, many mathematical modeling methods, including deep learning models, often yield unsatisfactory results. This paper proposes an individual recognition method for Amur tigers based on an improved InceptionResNetV2 model. Initially, the YOLOv5 model is employed to automatically detect and segment facial, left stripe, and right stripe areas from images of 107 individual Amur tigers, achieving a high average classification accuracy of 97.3%. By introducing a dropout layer and a dual-attention mechanism, we enhance the InceptionResNetV2 model to better capture the stripe features of individual tigers at various granularities and reduce overfitting during training. Experimental results demonstrate that our model outperforms other classic models, offering optimal recognition accuracy and ideal loss changes. The average recognition accuracy for different body part features is 95.36%, with left stripes achieving a peak accuracy of 99.37%. These results highlight the model’s excellent recognition capabilities. Our research provides a valuable and practical approach to the individual identification of rare and endangered animals, offering significant potential for improving conservation efforts.

Funder

National Key R&D Program of China

Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3