Effects of Cryoprotectant Concentration and Exposure Time during Vitrification of Immature Pre-Pubertal Lamb Cumulus–Oocyte Complexes on Nuclear and Cytoplasmic Maturation

Author:

Temerario Letizia1ORCID,Martino Nicola Antonio1ORCID,Bennink Monika2,de Wit Agnes2,Hiemstra Sipke Joost2,Dell’Aquila Maria Elena1,Lamy Julie2

Affiliation:

1. Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy

2. Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands

Abstract

Oocyte vitrification allows for the storing of endangered breed female gametes. Cryoprotectant (CPA) concentration and exposure time should ensure cell protection with minimal toxicity. In the present study, a high concentration-rapid exposure (HC-RE) and a low concentration-slow exposure (LC-SE) vitrification protocol, using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as permeating CPAs, were evaluated on meiotic competence and bioenergetic-oxidative status of pre-pubertal lamb immature COCs after in vitro maturation (IVM). For each protocol, COCs vitrified through a traditional protocol and fresh ones were used as controls. Both protocols allowed COC morphology preservation after vitrification-warming (V-W) and cumulus expansion after IVM. The maturation rate (7% and 14%) was comparable to the vitrified control (13% and 21%) but not satisfactory compared to fresh ones (58% and 64%; p < 0.001). The rate of mature oocytes displaying a perinuclear/subcortical (P/S) mitochondrial distribution pattern, an index of cytoplasmic maturity, was comparable between vitrified and fresh oocytes. The LC-SE vitrification protocol did not affect quantitative bioenergetic-oxidative parameters compared to both controls whereas HC-RE protocol significantly reduced intracellular reactive oxygen species (ROS) levels, indicating cell viability loss. In conclusion, to improve pre-pubertal lamb immature COC vitrification, the combination of low CPA concentrations with prolonged exposure time could be more promising to investigate further.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3