Monitoring Water‐Soil Dynamics and Tree Survival Using Soil Sensors under a Big Data Approach

Author:

Pascual ,Rivera ,Gómez ,Domínguez-Lerena

Abstract

The high importance of green urban planning to ensure access to green areas requires modern and multi-source decision-support tools. The integration of remote sensing data and sensor developments can contribute to the improvement of decision-making in urban forestry. This study proposes a novel big data-based methodology that combines real-time information from soil sensors and climate data to monitor the establishment of a new urban forest in semi-arid conditions. Water‐soil dynamics and their implication in tree survival were analyzed considering the application of different treatment restoration techniques oriented to facilitate the recovery of tree and shrub vegetation in the degraded area. The synchronized data-capturing scheme made it possible to evaluate hourly, daily, and seasonal changes in soil‐water dynamics. The spatial variation of soil‐water dynamics was captured by the sensors and it highly contributed to the explanation of the observed ground measurements on tree survival. The methodology showed how the efficiency of treatments varied depending on species selection and across the experimental design. The use of retainers for improving soil moisture content and adjusting tree-watering needs was, on average, the most successful restoration technique. The results and the applied calibration of the sensor technology highlighted the random behavior of water‐soil dynamics despite the small-scale scope of the experiment. The results showed the potential of this methodology to assess watering needs and adjust watering resources to the vegetation status using real-time atmospheric and soil data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3