Precipitation Changes in the Three Gorges Reservoir Area and the Relationship with Water Level Change

Author:

Li QinORCID,Liu Xiuguo,Zhong YulongORCID,Wang Mengmeng,Shi Manxing

Abstract

As the largest hydroelectric project worldwide, previous studies indicate that the Three Gorges Dam (TGD) affects the local climate because of the changes of hydrological cycle caused by the impounding and draining of the TGD. However, previous studies do not analyze the long-term precipitation changes before and after the impoundment, and the variation characteristics of local precipitation remain elusive. In this study, we use precipitation anomaly data derived from the CN05.1 precipitation dataset between 1988 and 2017 to trace the changes of precipitation before and after the construction of the TGD (i.e., 1988–2002 and 2003–2017), in the Three Gorges Reservoir Area (TGRA). Results showed that the annual and dry season precipitation anomaly in the TGRA presented an increasing trend, and the precipitation anomaly showed a slight decrease during the flood season. After the impoundment of TGD, the precipitation concentration degree in the TGRA decreased, indicating that the precipitation became increasingly uniform, and the precipitation concentration period insignificantly increased. A resonance phenomenon between the monthly average water level and precipitation anomaly occurred in the TGRA after 2011 and showed a positive correlation. Our findings revealed the change of local precipitation characteristics before and after the impoundment of TGD and showed strong evidence that this change had a close relationship with the water level.

Funder

National Natural Science Foundation of China

Funds of China Geological Survey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3