The Validity and Reliability of a Tire Pressure-Based Power Meter for Indoor Cycling

Author:

Fiolo Nicholas J.ORCID,Lu Hai-Ying,Chen Chia-Hsiang,Fuchs Philip X.ORCID,Chen Wei-Han,Shiang Tzyy-Yuang

Abstract

The purpose of this study was to evaluate the validity and reliability of a tire pressure sensor (TPS) cycling power meter against a gold standard (SRM) during indoor cycling. Twelve recreationally active participants completed eight trials of 90 s of cycling at different pedaling and gearing combinations on an indoor hybrid roller. Power output (PO) was simultaneously calculated via TPS and SRM. The analysis compared the paired 1 s PO and 1 min average PO per trial between devices. Agreement was assessed by correlation, linear regression, inferential statistics, effect size, and Bland–Altman LoA. Reliability was assessed by ICC and CV comparison. TPS showed near-perfect correlation with SRM in 1 s (rs = 0.97, p < 0.001) and 1-min data (rs = 0.99, p < 0.001). Differences in paired 1 s data were statistically significant (p = 0.04), but of a trivial magnitude (d = 0.05). There was no significant main effect for device (F(1,9) = 0.05, p = 0.83, ηp2 = 0.97) in 1 min data and no statistical differences between devices by trial in post hoc analysis (p < 0.01–0.98; d < 0.01–0.93). Bias and LoA were −0.21 ± 16.77 W for the 1 min data. Mean TPS bias ranged from 3.37% to 7.81% of the measured SRM mean PO per trial. Linear regression SEE was 7.55 W for 1 min TPS prediction of SRM. ICC3,1 across trials was 0.96. No statistical difference (p = 0.09–0.11) in TPS CV (3.6–5.0%) and SRM CV (4.3–4.7%). The TPS is a valid and reliable power meter for estimating average indoor PO for time periods equal to or greater than 1 min and may have acceptable sensitivity to detect changes under less stringent criteria (±5%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3