Author:
Zhou Yinjun,Gao Yu,Shen Qinjing,Yan Xia,Liu Xiaobin,Zhu Shuai,Lai Yuansen,Li Zhijing,Lai Zhongping
Abstract
The Qinghai-Tibetan Plateau, known as the world’s “third pole”, is home to several large rivers in Asia. Its geomorphology is exceptionally vulnerable to climate change, which has had a significant impact on historical riverbed development through runoff and sedimentation processes. However, there is limited research combining climate change, sedimentology, and chronology with river dynamics to investigate riverbed evolution patterns in geological-historical time scales and their changes in overland flow capacity. In the current study, the evolution of a representative portion of the river channel in the Nangqian basin in the Lancang River headwaters was investigated to explore the reaction of the riverbed to climatic change during the geological period via field surveys, riverbed drilling, optically stimulated luminescence (OSL) dating and bankfull channel geometry parameters. The generalized channel section of the historical period was obtained by linking sedimentary layers of the same age on the distribution map of borehole sections, and the bankfull area of the river was computed accordingly. The restored bankfull areas can effectively reflect the ability of historical river channels to transport water and sediment, thus reflecting the climate change at that time. The findings showed that river morphology in the mounded river section could be successfully reconstructed using OSL dating and sedimentary records and that the conceptual sections of the historical warm periods at 2000 years (2 ka) and 0.7 ka can be recovered. Based on the reconstruction, the calculated bankfull areas during the two warm events were larger than present by factors of 1.28 and 1.9, respectively, indicating a stronger capacity for transporting water and sediments. This is the first trial in the Lancang headwaters to investigate the response of river morphology to climate change on a geological time scale.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献