Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies

Author:

Chen KaiwenORCID,Yu Shuang’en,Ma TaoORCID,Ding Jihui,He PingruORCID,Dai Yan,Zeng Guangquan

Abstract

Effective water and nitrogen (N) management strategies are critical for sustainable agricultural development. Lysimeter experiments with two deep percolation rates (low percolation and high percolation, i.e., LP and HP: 3 mm d−1 and 5 mm d−1) and five N application levels (N0~N4: 0, 60, 135, 210 and 285 kg N ha−1) were conducted to investigate the effects of controlled drainage on water productivity (WP) and N use efficiency (NUE) in water-saving irrigated paddy fields. The results demonstrated that NH4+-N and NO3−-N were the major components of total nitrogen (TN) in ponded water and leachate, accounting for more than 77.1% and 83.6% of TN, respectively. The risk of N leaching loss increased significantly under treatment of high percolation rates or high N application levels. High percolation loss required greater irrigation input, thus reducing WP. In addition, N uptake increased with increasing N application, but fertilization applied in excess of crop demand had a negative effect on grain yield. NUE was affected by the amount of N applied and increased with decreasing N levels. Water and N application levels had a significant effect on N uptake of rice, but their interaction on N uptake or NUE was not significant. For the LP and HP regimes, the highest N uptake and WP were obtained with N application levels of 285 kg ha−1 and 210 kg ha−1, respectively. Our overall results suggested that the combination of controlled drainage and water-saving irrigation was a feasible mitigation strategy to reduce N losses through subdrainage percolation and to provide more nutrients available for rice to improve NUE, thus reducing diffuse agricultural pollution. Long-term field trials are necessary to validate the lysimeter results.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3