Abstract
In the last 50 years, the technology of rotary heat exchangers has not changed considerably. A reliable simulation can help improve the design of this technology. In this work, a simulation for rotary heat exchangers was developed and validated with multiple experimental data. This simulation takes an innovative approach based on locally calculated heat transfer coefficients and considers the entry region effect. This approach proved to be accurate since the average difference between the experimental results and the proposed model with a constant heat boundary condition is 0.1% and the maximum absolute deviation 1%. Experimental, as well as simulation results, indicate that lower empty tube gas velocity (1 m/s) and higher rotational speed (12 rpm) improve thermal efficiency compared to commonly used operating conditions. Additionally, a new model for predicting the local internal Nusselt number for sine ducts in the rotor channels is proposed, which considers the entry region effect.
Funder
Bundesministerium für Bildung und Forschung
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference44 articles.
1. Wärmerückgewinnung in Raumlufttechnischen Anlagen,1997
2. Model-based analysis and simulation of regenerative heat wheel
3. A review on the air-to-air heat and mass exchanger technologies for building applications
4. Die Mehrdimensionle Optimierung von Wärmerückgewinnungssystemen;Kaup,2014
5. Fundamentals of Heat Exchanger Design;Shah,2012
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献