Improvement of a Nusselt-Based Simulation Model for Heat Transfer in Rotary Heat Exchangers

Author:

Melian EloyORCID,Klein Harald,Thißen Nikolaus

Abstract

In the last 50 years, the technology of rotary heat exchangers has not changed considerably. A reliable simulation can help improve the design of this technology. In this work, a simulation for rotary heat exchangers was developed and validated with multiple experimental data. This simulation takes an innovative approach based on locally calculated heat transfer coefficients and considers the entry region effect. This approach proved to be accurate since the average difference between the experimental results and the proposed model with a constant heat boundary condition is 0.1% and the maximum absolute deviation 1%. Experimental, as well as simulation results, indicate that lower empty tube gas velocity (1 m/s) and higher rotational speed (12 rpm) improve thermal efficiency compared to commonly used operating conditions. Additionally, a new model for predicting the local internal Nusselt number for sine ducts in the rotor channels is proposed, which considers the entry region effect.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. Wärmerückgewinnung in Raumlufttechnischen Anlagen,1997

2. Model-based analysis and simulation of regenerative heat wheel

3. A review on the air-to-air heat and mass exchanger technologies for building applications

4. Die Mehrdimensionle Optimierung von Wärmerückgewinnungssystemen;Kaup,2014

5. Fundamentals of Heat Exchanger Design;Shah,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3